2D Hemiporphyrazine: A new nanoporous material

نویسندگان

چکیده

Crystalline microporous materials are solids formed by interconnected pores of less than 2 nm in size. Typically, they possess large surface areas desirable for versatile applications such as catalysis, gas adsorption, and energy storage. In the present work, we propose a new porphyrin-based 2D nanoporous crystal, named Porphyrazine (2DP), which is topological assembling H$_{5}$C$_{13}$N$_{4}$ porphyrins. We have considered its monolayer, bi-layer, molecular crystal (bulk) arrangements. carried out DFT calculations to investigate 2DP structural electronic properties. Results show that very stable structure with direct bandgap 0.65 eV significant optical absorption visible range. exhibited satisfactory affinity lithium atoms. Simulations also showed existence proton transfer between nitrogen It first report on site-specific hydrogen exchange process crystals.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoporous Si as an efficient thermoelectric material.

Room-temperature thermoelectric properties of n-type crystalline Si with periodically arranged nanometer-sized pores are computed using a combination of classical molecular dynamics for lattice thermal conductivity and ab initio density functional theory for electrical conductivity, Seebeck coefficient, and electronic contribution to the thermal conductivity. The electrical conductivity is foun...

متن کامل

Energetics of Zn2+ adsorption in silicate MEL-type nanoporous material

Density-functional-based and ab initio calculations were implemented at different computational levels to estimate the binding energy of Zn2+ ion adsorbed on the available sites of a silicate MEL-type adsorbent. B3LYP and MP2 were used in combination with the 6-31G*, 6-31+G*, LanL2DZ, 6-311+G*, and Def2-TZVP basis sets. The zinc cation was found to preferentially occupy the 6MR sites followed b...

متن کامل

Multiscale Simulation of Atomic Layer Deposition in a Nanoporous Material

A multiscale simulator for alumina film growth inside a nanoporous material during an atomic layer deposition process is developed. The model combines a continuum description at the macroscopic level of precursor gas transport inside a nanopore during exposure to each of the two precursor species (trimethyaluminum and water) with a lattice Monte Carlo simulation of the film growth on the micros...

متن کامل

Guest-dependent spin crossover in a nanoporous molecular framework material.

The nanoporous metal-organic framework Fe2(azpy)4(NCS)4.(guest) (azpy is trans-4,4'-azopyridine) displays reversible uptake and release of guest molecules and contains electronic switching centers that are sensitive to the nature of the sorbed guests. The switching of this material arises from the presence of iron(II) spin crossover centers within the framework lattice, the sorbed phases underg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physica E-low-dimensional Systems & Nanostructures

سال: 2023

ISSN: ['1386-9477', '1873-1759']

DOI: https://doi.org/10.1016/j.physe.2023.115705